Synthesis of Polycyclic Hydrocarbons by Palladium-Catalyzed Cross-Coupling Reactions of Vinylic Bromides with Diphenylacetylene

Gerald Dyker*a, Peter Siemsenb, Stefan Sostmannb, Anke Wiegandb, Ina Dixc, and Peter G. Jonesc

Fachbereich 6, Organische/Metallorganische Chemie der Gerhard-Mercator-Universität-GH Duisburg^a, Lotharstraße 1, D-47048 Duisburg, Germany

Institut für Organische Chemie der Technischen Universität Braunschweig^b,

Hagenring 30, D-38106 Braunschweig, Germany

Institut für Anorganische Chemie und Analytische Chemie der Technischen Universität Braunschweig^c, Hagenring 30, D-38106 Braunschweig, Germany

Received August 19, 1996

Keywords: Polycycles / Hydrocarbons / Palladium catalysis / Domino processes / Cross coupling / Homogeneous catalysis

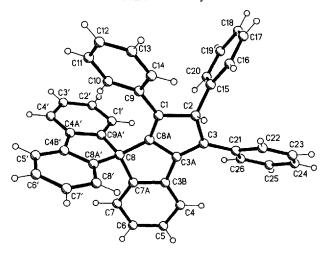
Vinylic bromides of type 1 undergo cross-coupling reactions with diphenylacetylene (5) leading to various polycyclic hy-

drocarbons. The ratio of the 1:1 to the 1:2 products can readily be controlled by varying the reaction conditions.

Vinylic halides are known as versatile coupling components for palladium-catalyzed processes^[1]. The readily accessible aryl-substituted vinylic bromides of type **1**, with a variable central ring, are of special interest as building blocks for polycyclic hydrocarbons. Recently, we studied a palladium-catalyzed homo-coupling process of such substrates, leading to annelated pentafulvenes **2** in good to excellent yields^[2] (Scheme 1, for 6- and 7-membered central rings). Five-membered palladacycles **3** are assumed to be key intermediates^[3] in this domino process. Since 5-membered palladacycles have been shown to readily add substituted acetylenes^[4], we envisaged that under reaction conditions favoring palladacycle formation, a cross-coupling

reaction of the vinylic bromides 1 with one equivalent of substituted acetylene would occur, resulting in 1:1 annelation products. However, an attempt by Silverberg et al.^[5] to achieve such an annelation reaction, using *cis*-bromostilbene (4) and diphenylacetylene (5) as model substrates, was unsuccessful (Scheme 2). Instead of the anticipated 1:1 product 6, the substituted fulvene 7 was obtained as a 1:2 product^[6]. In this paper we report on cross-coupling reactions of vinylic bromides of type 1 with diphenylacetylene (5), which result in both 1:1 and 1:2 products, depending on the size of the central ring and on the reaction conditions.

Scheme 1. Palladium-catalyzed homo-coupling reaction of vinylic bromides of type 1; additional ligands have been omitted for clarity


Scheme 2. Palladium-catalyzed cross-coupling reaction of bromostilbene 4 with diphenylacetylene (5)^[5]

Scheme 3. Reagents: a: 4 equiv. of 5, 6 mol-% Pd(OAc)₂, K_2CO_3 , nBu_4NBr , DMF, N_2 , 3 d, 100 °C; 45% yield

Results and Discussion

We started our investigation with the fluorenone-derived vinylic bromide 8^[2] (Scheme 3). The palladium-catalyzed cross-coupling reaction with diphenylacetylene (5) led to the isolation of the spiro-annelated product 9 as a single

Figure 1. X-ray structure analysis of the spirocyclic hydrocarbon 9; radii are arbitrary

regioisomer, as confirmed by an X-ray structure analysis (Figure 1)^[7]. Concerning the mechanistic interpretation, substrate 8 with the 5-membered central ring is to some extent a special case, in that the initial formation of a palladacycle, as in Scheme 1, is inhibited due to geometric constraints^[2]. The stereoselective syn addition of two equivalents of the acetylene 5 presumably leads to a trienyl-substituted Pd^{II} complex 12. The intramolecular carbopalladation giving rise to intermediate 13 should then proceed in a syn manner. Consequently, rotation about the central C-C bond would be necessary, in order for the syn-β-hydrogen elimination to the pentafulvalene 14 to occur. This process does not occur for steric reasons. Instead, the cyclopalladation to a phenyl substituent to give 11 successfully competes. From this 6-membered palladacycle the reaction pathway leads to the observed product 9 by reductive elimination of the active Pd⁰ catalyst and subsequent double-bond isomerization. According to semiempirical calculations (AM1) 9 is indeed the thermodynamically most stable of the five possible isomers (by 2.1 to 7.7 kcal/mol).

The vinylic bromide 15^[2] with a 7-membered central ring behaved differently (Scheme 4); two main products were formed by the condensation with diphenylacetylene (5): the benzopleiadiene^[8] 16 and the dibenzo-annelated sesquifulvalene^[9] 17. The product ratio was strongly influenced by the reaction conditions. A higher concentration of the vinylic bromide 15 with an excess of the alkyne 5 led mainly to the formation of the 1:2 product 17 (64%). At higher dilution, with the use of a 1:1 ratio of the coupling components, the 1:1 product 16 predominated; 16 was isolated in 57% yield, whereas 17 was only a very minor product (3%).

Formation of 16 requires C-H activation at the *peri* position. This probably takes place by a cyclopalladation with the 5-membered palladacycle 18 as the key intermediate (Scheme 5). The cyclopalladation should be favored at higher dilution and without using an excess of 5, precisely the reaction conditions that were found to favor the 1:1 product 16. Nevertheless, an alternative reaction pathway via the 7-membered palladacycle 20 cannot be ruled out.

Scheme 4. Reagents: a: 6 mol-% Pd(OAc)₂, K_2CO_3 , nBu_4NBr , DMF, N_2 , 3 d, 100 °C; for $c_{15}=0.056$ m and 4 equiv. of 5: 14% of 16 and 64% of 17; for $c_{15}=0.015$ m and 1 equiv. of 5: 57% of 16 and <3% of 17

Scheme 5. Palladium complexes as reactive intermediates in the formation of the polycyclic hydrocarbons 16 and 17

For the formation of the 1:2 product 17 the ring closure is once again the crucial reaction step. Here also, two

22

Scheme 6. Reagents: a: 6 mol-% Pd(OAc)₂, K_2CO_3 , nBu_4NBr , DMF, N_2 , 3 d, 100°C; for $c_{23}=0.05$ M and 4 equiv. of 5: 34% of 24, 6% of 25 and 0.8% of 26; for $c_{23}=0.0125$ M and 1 equiv. of 5: 36% of 24 and 53% of 26

alternative pathways have to be considered. As in the case of intermediate 13 (Scheme 3) in the reaction sequence starting from 8, the sterically crowded carbopalladated intermediate 21 would have to rotate about the central C-C single bond for the syn-β-hydrogen elimination to occur. Although 21 may be somewhat more flexible than 13 (the fluorene unit of 13 is sterically less demanding but more rigid compared to the suberene unit of 21), the high steric barrier for this process should result in some by-products analogous to spirocycle 9. As this was not found experimentally, we are inclined to rule out intermediate 21. Instead, a cyclopalladation route to 17 seems more likely. We assume the palladate complex 22, with an aromatic, cationic dibenzocycloheptatrienyl substituent, to be the key intermediate.

Finally, we tested the vinylic bromide $23^{[2]}$ with a 6-membered central ring as a coupling component with diphenylacetylene (5) (Scheme 6). By employing an excess of 5 a complex product mixture was obtained, from which three components were isolated and identified. Besides a small amount of the homo-coupling product 26, we found the 1:1 product 24, which resembles the suberenone-derived product 16, and the substituted cyclopentadiene 25, which corresponds to the fluorenone-derived product 9. For the identification of 25 its NMR spectra were compared to those of

21

compound 9; the diagnostic signals of the benzylic C–H group have very similar chemical shifts (${}^{1}\text{H}$: $\delta = 5.59$ compared to 5.56; ${}^{13}\text{C}$: $\delta = 67.1$ compared to 67.3). Again, we have confirmed by semiempirical calculations that the proposed structure 25 is by far the thermodynamically most stable of the five possible double-bond isomers. At higher dilution and using a 1:1 ratio of the coupling components, the annelation product 24 and the homo-coupling product 26 were strongly favored. Clearly, the reactions of 23 exhibit similarities to those of both 8 and 15.

In summary, we have shown that vinylic bromides of type 1 undergo cross-coupling reactions with diphenylacetylene (5) leading to various polycyclic hydrocarbons, whereby the product distribution can easily be controlled by variation of the reaction conditions.

Financial support by the *Volkswagenstiftung*, by the *Fonds der Chemischen Industrie* and by the *Degussa AG* is gratefully acknowledged.

Experimental Section

Melting points are uncorrected. – IR: Nicolet 320. – UV/Vis: HP 8452 A. – NMR: Bruker AM 400. – 1 H-NMR spectra were recorded at 400.1 MHz by using CDCl₃ as the solvent and TMS as the internal standard. – 13 C-NMR spectra were measured at 100.6 MHz by using CDCl₃ as the solvent and as the internal standard (δ = 77.05). – MS: Finnigan MAT 8430. Mass spectra were recorded at an ionizing voltage of 70 eV by electron impact. – For analytical TLC, precoated plastic sheets "POLYGRAM SIL G/UV254" from Macherey-Nagel & Co. were used.

Palladium-Catalyzed Cross-Coupling Reactions of Vinylic Bromides of Type 1 with Diphenylacetylene (5). — General Procedure: A mixture of 0.56–1.00 mmol of vinylic bromide, 4 equiv. of 5 (or 1 equiv. for the experiment at higher dilution), 1.11 g (8.0 mmol) of K₂CO₃, 645 mg (2.00 mmol) of nBu₄NBr, 7.0 mg (31 µmol) of Pd(OAc)₂ and 10 ml of dry DMF (or 40 ml for the experiment at higher dilution) in a sealed tube (for convenience) was stirred under N₂ at 100 °C for 3 d. The reaction mixture was then diluted with 50 ml of water and then extracted three times with 50 ml of diethyl ether. The combined ether extracts were filtered through silica gel and concentrated. The crude product mixture was separated by flash chromatography [petroleum ether, b.p. 50–70 °C, or petroleum ether/diethyl ether (100:1), silica gel] and the isolated hydrocarbons were dried in vacuo.

Coupling Reaction of Vinylic Bromide 8: 257 mg (1.00 mmol) of 8 and 712 mg (4.00 mmol) of 5 in 10 ml of dry DMF were employed in the palladium-catalyzed reaction, according to the general procedure. The excess of 5 was removed from the crude product mixture at 120 °C/0.5 Torr in a Kugelrohr apparatus. Following flash chromatography [petroleum ether/diethyl ether (100:1), silica gel] a yellow solid crystallized. Recrystallization from dichloromethane/pentane gave 238 mg (45%) of spirocyclic hydrocarbon 9 as a yellow solid of m.p. 234-236 °C. – IR (KBr): $\tilde{v} = 3058$ cm⁻¹ (w), 3020 (w), 1599 (m), 1493 (m), 1444 (m), 769 (s), 760 (s), 751 (s), 729 (s), 707 (m), 697 (s), 684 (m), 670 (s), 562 (w), 547 (w). UV (11.6 μ mol/l acetonitrile): λ_{max} (lg ϵ) = 206 nm (4.92, sh), 230 (4.60, sh), 244 (sh), 268 (4.47), 292 (4.19, sh), 306 (4.09), 362 (3.89). ¹H NMR: $\delta = 5.56$ (s, 1 H), 6.48 ("d", J = 7.6 Hz, 1 H), 6.54-6.56 (m, 2H), 6.68-6.76 (m, 3H), 6.94-7.07 (m, 6H), 7.13-7.17 (m, 3H), 7.21-7.31 (m, 3H), 7.34-7.44 (m, 4H), 7.59 ("d", J = 7.6 Hz, 2H), 7.78 ("d", J = 7.5 Hz, 1H), 7.89 (dd, J =

7.6, 3.3 Hz, 2H). $-^{13}$ C NMR: $\delta = 60.91$ (s), 67.32 (d), 119.65 (d), 120.28 (d), 122.46 (d), 124.43 (d), 124.53 (d), 124.74 (d), 125.90 (d), 126.39 (d), 127.06 (d), 127.26 (d), 127.31 (d), 127.48 (d), 127.61 (d), 127.81 (d), 127.95 (d), 128.15 (d), 128.22 (d), 128.30 (d), 128.48 (d), 128.53 (d), 129.15 (d), 133.80 (d), 135.00 (d), 135.87 (s), 138.88 (s), 139.49 (s), 140.61 (s), 141.03 (s), 141.58 (s), 146.67 (s), 148.77 (s), 150.45 (s), 151.51 (s), 155.59 (s). - MS; m/z (%): 533 (44), 532 (100) [M+], 455 (12), 441 (14), 439 (6), 376 (12), 365 (16), 352 (9), 267 (18), 265 (46), 188 (12), 165 (4). - C₄₂H₂₈ (532.7): calcd. C 94.70, H 5.30; found C 94.71, H 5.18.

Crystal Data for Compound 9^[7]: Monoclinic, space group $P2_1/n$, a=909.43(10), b=1592.87(14), c=1990.8(2) pm, $\beta=100.840(10)$, V=2.8324 nm³, Z=4, $D_x=1.249$ mg m⁻³, λ (Mo- K_α) = 71.073 pm, $\mu=0.07$ mm⁻¹, $T=-130\,^{\circ}$ C. Data collection and reduction: A pale-yellow prism $0.6\times0.4\times0.3$ mm was mounted in inert oil. Data were collected to $2\Theta_{\rm max}=50^{\circ}$ on a Stoe STADI-4 diffractometer. Of 9152 measured data, 4976 were unique. Structure solution and refinement: The structure was solved by direct methods and refined anisotropically on F^2 using all reflections (program SHELXL-93, G. M. Sheldrick, University of Göttingen). Hydrogen atoms were included by using a riding model. The final $wR(F^2)$ was 0.084 for 379 parameters, conventional R(F) 0.040. S=0.83; max. $\Delta/\rho=0.001$; max. $\Delta/=173$ e nm⁻³.

Coupling Reactions of Vinylic Bromide 15: 160 mg (0.56 mmol) of 15 and 399 mg (2.24 mmol) of 5 in 10 ml of dry DMF were employed in the palladium-catalyzed reaction, according to the general procedure. The excess of 5 was removed from the crude product mixture at 120°C/0.5 Torr in a Kugelrohr apparatus. The residue was then fractionated by flash chromatography (petroleum ether, silica gel).

Ist Fraction with $R_f = 0.2$: 31 mg (14%) of 2,3-diphenylbenzo-[4,5]cyclohepta[1,2,3-de]naphthalene (16) as yellow crystals of m.p. $78 \,^{\circ}\text{C.} - \text{IR (KBr)}$: $\tilde{v} = 3053 \,\text{cm}^{-1}$ (w), 3023 (w), 1597 (w), 1577 (w), 1491 (w), 1442 (w), 1384 (w), 1372 (w), 1021 (w), 899 (w), 828 (m), 789 (m), 771 (s), 752 (m), 701 (s), 637 (w), 617 (w), 584 (w), 566 (w). – UV (18.7 μ mol/l acetonitrile): λ_{max} (lg ϵ) = 192 nm (4.78), 202 (4.68, sh), 208 (4.72), 242 (4.70), 254 (4.54), 292 (3.94, sh), 346 (3.92, sh), 362 (3.97), 378 (3.94, sh), 406 (3.76, sh). - ¹H NMR: $\delta = 6.52$ (d, J = 12.1 Hz, 1 H), 6.56 (d, J = 12.1 Hz, 1 H), 7.12-7.19 (m, 9H), 7.20-7.32 (m, 6H), 7.33 (m, 1H), 7.41 (dd, J = 7.9, 1.9 Hz, 1H), 7.58 (s, 1H). $- {}^{13}\text{C NMR}$: $\delta = 125.64$ (d), 126.38 (d), 126.43 (d), 126.88 (d), 127.67 (d), 128.10 (d), 129.13 (d), 129.91 (d), 129.96 (d), 130.05 (d), 131.00 (d), 131.25 (d), 131.67 (d), 133.51 (d), 134.61 (s), 134.92 (s), 135.66 (d), 137.31 (s), 137.48 (s), 138.05 (s), 138.99 (s), 139.18 (s), 140.14 (s), 141.58 (s). – MS; m/z(%): 381 (20), 380 (100) [M], 363 (12), 303 (14), 302 (21), 181 (8), 93 (8), 44 (19). - C₃₀H₂₀ (380.5): calcd. C 94.70, H 5.30; found C 94.68, H 5.23.

2nd Fraction with $R_{\rm f}=0.05$, further purified by sublimation at 230 °C/0.5 Torr in a Kugelrohr apparatus: 198 mg (64%) of the benzo-annelated sesquifulvalene 17 as red needles of m.p. 272–274 °C. – IR (KBr): $\tilde{\nu}=3157~{\rm cm}^{-1}$ (w), 3021 (w), 1590 (w), 1485 (w), 1440 (w), 1029 (w), 798 (w), 772 (m), 716 (m), 698 (s), 564 (w). – UV (14.5 μmol/l acetonitrile): $\lambda_{\rm max}$ (lg ε) = 210 nm (4.71, sh), 266 (4.42), 304 (4.16, sh), 316 (4.11, sh), 354 (3.93, sh). – 1 H NMR: δ = 7.11 (s, 2H), 7.07 ("d", J=7.8 Hz, 2H), 6.91–7.00 (m, 6H), 6.84–6.90 (m, 8H), 6.80 (td, J=7.8, 1.1 Hz, 2H), 6.73 (br. s, 8H), 6.57 (td, J=7.6, 1.0 Hz, 2H). – 13 C NMR: δ = 124.83 (d), 126.04 (d), 126.39 (d), 126.56 (d), 126.75 (br. d, 126.91 (d), 127.21 (d), 129.03 (d), 130.37 (d), 130.61 (br. d), 130.95 (d), 133.14 (s), 134.89 (s), 136.00 (s), 137.24 (s), 137.47 (s), 140.13

(s), 146.16 (s), 151.69 (s). – MS; mlz (%): 559 (44), 558 (100) [M⁺], 481 (22), 403 (11), 291 (8), 201 (17), 191 (11). – $C_{44}H_{30}$ (558.7): calcd. C 94.59, H 5.41; found C 94.59, H 5.36.

The corresponding reaction at higher dilution, using 167 mg (0.59 mmol) of 15 and 104 mg (0.58 mmol) of 5 in 40 ml of dry DMF, i.e. a 1:1 ratio of the coupling components, gave 128 mg (57%) of the yellow hydrocarbon 16 and only trace amounts of the red hydrocarbon 17.

Coupling Reactions of Vinylic Bromide 23: 163 mg (500 μ mol) of 23 and 356 mg (2.00 mmol) of 5 in 10 ml of dry DMF were employed in the palladium-catalyzed reaction, according to the general procedure. The excess of 5 was then removed from the crude product mixture at 105 °C/0.4 Torr in a Kugelrohr apparatus to afford 277 mg of a deep-red residue [TLC, petroleum ether/diethyl ether (50:1), silica gel: $R_f = 0.27$ (24), 0.21 (26), 0.14 (25), and some more polar products]. The residue was fractionated by flash chromatography [petroleum ether/diethyl ether (100:1), silica gel].

1st Fraction: 72 mg (34%) of the substituted benz[de]anthracene 24 as yellow crystals of m.p. 218°C (from dichloromethane/pentane). – IR (KBr): $\tilde{v} = 3057 \text{ cm}^{-1}$ (w), 3026 (w), 2948 (m), 2870 (w), 1603 (w), 1594 (w), 1489 (w), 1444 (w), 1388 (w), 882 (w), 774 (s), 749 (m), 701 (s), 638 (w). – UV (17.7 μ mol/l acetonitrile): λ_{max} $(\lg \varepsilon) = 200 \text{ nm } (4.92), 230 (4.52, \text{sh}), 238 (4.51, \text{sh}), 260 (4.52, \text{sh}),$ 266 (4.54), 308 (3.86, sh), 318 (4.06, sh), 328 (4.19, sh), 338 (4.30), 354 (4.27, sh). - ¹H NMR: $\delta = 2.08-2.19$ (m, 4H), 2.26-2.34 (m, 2H), 2.40-2.49 (m, 2H), 7.15-7.33 (m, 11H, phenyl-H and 10-H), 7.37 ("t", "J" = 7.4 Hz, 1H, 9-H), 7.44 ("dd", "J" = 7.1, 7.3Hz, 1H, 5-H), 7.54 ("dd", "J" = 8.4, 1.0 Hz, 1H, 4-H), 7.59 (m, 2H, 6-H and 8-H), 8.13 ("dd", "J" = 8.0, 1.3 Hz, 1H, 11-H), 8.19 (s, 1H, 1-H); assignments based on HH-COSY and CH-COSY. — ¹³C NMR: $\delta = 27.75$ (t), 48.97 (t), 50.91 (s), 121.45 (d, C-1), 122.92 (d, C-8), 123.09 (d, C-11), 124.62 (d, C-4), 126.22 (d), 126.29 (d), 126.51 (d, C-5), 126.70 (d), 126.91 (d, C-6), 127.68 (d), 127.84 (d), 128.18 (d, C-5), 129.76 (s), 130.15 (d), 130.66 (s), 131.55 (d), 132.81 (s), 138.48 (s), 139.46 (s), 142.39 (s), 145.19 (s), 146.46 (s). – MS; m/z (%): 424 (6), 423 (34), 422 (100) [M⁺], 421 (17), 394 (11), 393 (34), 380 (14), 367 (23), 365 (14), 363 (15), 346 (19), 345 (64), 317 (18), 316 (13), 315 (24), 313 (13), 302 (11), 289 (11), 182 (13). -C₃₃H₂₆ (422.6): calcd. C 93.80, H 6.20; found C 93.71, H 6.21.

2nd Fraction: 2.0 mg (0.8%) of the homo-coupling product $26^{[2]}$ as red crystals of m.p. $205\,^{\circ}$ C.

3rd Fraction: 17 mg (5.7%) of the substituted cyclopentadiene **25** as slightly yellow needles of m.p. 264–265 °C (from 2-propanol). – IR (KBr): $\tilde{v} = 2929$ cm⁻¹ (m), 2865 (w), 1661 (m), 1631 (m), 1596 (m), 1488 (m), 1451 (m), 1245 (m), 1213 (w), 1172 (m), 1158 (m), 1142 (m), 1107 (s), 1073 (s), 1039 (s), 1010 (m), 757 (s), 696 (s), 556 (w). – UV (7.3 μmol/l acetonitrile): λ_{max} (lg ε) = 194 nm (5.11), 214 (4.74, sh), 224 (4.54, sh), 228 (4.49, sh), 266 (4.27, sh), 366 (3.96). – ¹H NMR: δ = 2.24–2.40 (m, 4H), 2.50–2.58 (m, 2H), 2.62–2.77 (m, 2H), 5.59 (s, 1H), 6.73–6.84 (m, 6H),

6.91-6.94 (m, 2H), 6.97 ("t", "J" = 7.3 Hz, 1H), 7.04-7.10 (m, 5H), 7.12 ("t", "J" = 7.5 Hz, 1H), 7.16 ("d", "J" = 7.7 Hz, 2H), 7.22-7.27 (m, 2H), 7.30 ("t", " \mathcal{J} " = 8.0 Hz, 1H), 7.37 ("t", " \mathcal{J} " = 7.7 Hz, 2H), 7.41 ("d", "J" = 7.3 Hz, 1H), 7.58 ("d", "J" = 8.1 Hz, 1H), 7.60 ("dd", "J" = 8.2, 1.0 Hz, 2H), 7.83-7.86 (m, 1H). $- {}^{13}$ C NMR: $\delta = 29.35$ (t), 30.01 (t), 48.88 (s), 49.92 (t), 52.98 (t), 53.57 (s), 67.08 (d), 122.35 (d), 125.84 (d), 125.87 (d), 126.36 (d), 126.39 (d), 126.57 (d), 126.68 (d), 127.07 (d), 127.13 (d), 127.33 (d), 127.35 (d), 127.71 (d), 127.87 (d), 128.24 (d), 128.28 (d), 128.34 (d), 128.52 (d), 128.65 (d), 129.65 (d), 132.47 (s), 133.86 (s), 135.78 (s), 135.96 (s), 137.93 (s), 138.63 (s), 139.51 (s), 139.64 (s), 145.19 (s), 145.93 (s), 147.15 (s), 158.90 (s), 162.58 (s). – MS; m/z (%); 602 (13), 601 (49), 600 (100) [M⁺], 510 (9), 509 (24), 389 (9), 319 (12), 291 (9), 201 (9), 167 (11), 149 (29), 135 (9), 86 (13), 84 (23), 70 (14), 69 (16), 57 (29), 45 (61). $-C_{47}H_{36}$ (600.8): calcd. C 93.96, H 6.04; found C 93.64, H 5.70. - Mol. mass calcd. 600.2817; found 600.2810.

The preliminary investigation of a more polar fraction by NMR and MS indicated a product with a molecular mass of 632, which is derived from 1 equiv. of 24, 2 equiv. of 5, and 1 equiv. of oxygen.

The corresponding reaction at higher dilution, using 163 mg (500 µmol) of 23 and 89 mg (500 µmol) of 5 in 40 ml of dry DMF, i.e. a 1:1 ratio of the coupling components, gave 77 mg (36%) of the 1:1 product 24 and 65 mg (53%) of the homo-coupling product 26.

[1] J. Tsuji, Palladium Reagents and Catalysts: Innovations in Organic Synthesis, Wiley, Chichester, 1995.

[2] G. Dyker, F. Nerenz, P. Siemsen, P. Bubenitschek, P. G. Jones, Chem. Ber. 1996, 129, 1265-1269.

[3] G. Dyker, J. Körning, F. Nerenz, P. Siemsen, S. Sostmann, A. Wiegand, P. G. Jones, P. Bubenitschek, *Pure Appl. Chem.* 1996, 68, 323-326.

[4] D. J. Cardenas, C. Mateo, A. M. Echavarren, Angew. Chem. 1994, 106, 2529-2531; Angew. Chem. Int. Ed. Engl. 1994, 33, 2445.

[5] L. J. Silverberg, G. Wu, A. L. Rheingold, R. F. Heck, J. Organomet. Chem. 1991, 409, 411-420.

[6] Further examples of fulvene formation from vinylic halides and acetylenes: [6a] G. C. M. Lee, B. Tobias, J. M. Holmes, D. A. Harcourt, M. E. Garst, J. Am. Chem. Soc. 1990, 112, 9330-9336. – [6b] E. Negishi, L. S. Harring, Z. Owczaraczyk, M. M. Mohamud, M. Ay, Tetrahedron Lett. 1992, 33, 3253-3256

[7] Further details of the crystal structure investigation are available on request from Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-405633 for compound 9.

[8] Y. Sugihara, H. Yamamoto, K. Mizoue, I. Murata, Angew. Chem. 1987, 99, 1283-1285; Angew. Chem. Int. Ed. Engl. 1987, 26, 1247

26, 1247.

[9] [9a] H. Prinzbach, D. Seip, L. Knothe, W. Faiist, Liebigs Ann. Chem. 1966, 34-56. — [9b] H. Prinzbach, D. Seip, L. Knothe, W. Faiist, Helv. Chim. Acta 1967, 50, 1669—1692. — [9c] B. Pullman, M. A. Pullman, E. D. Bergmann, M. H. Berthod, E. Fischer, Y. Hirshberg, D. Lavie, E. Mayot, Bull. Soc. Chim. Fr. 1952, 73-78.

[96182]